Does FAAST offer any improvements against the typical false alarms associated with aspiration systems?

FAAST uses a unique dual source smoke detection technology designed to provide it with decision-making capabilities superior to other aspiration smoke detectors (ASDs) currently on the market. A blue LED that covers the widest range of fires is used to detect smoke. An infrared laser* is used to detect dust and other typical sources of false alarm. FAAST combines these dual detection sources with advanced algorithms to discriminate smoke from dust and drastically improve both smoke detection and false alarm immunity.

*Note that most competitive ASDs rely solely on an infrared laser for detection.

Does System Sensor offer design support for pipe network layout?

Yes, FAAST’s PipeIQ™ software has a Pipe Wizard feature that can virtually lay out the pipe network for standard room configurations. For more complex layout, the software allows the user or designer to lay out the network pipe by pipe if required. PipeIQ provides the following comprehensive assistance:

- Design the pipe layout, confirm transport times, balance the system, and obtain layout, bill of material and text reports in a .pdf format
- Configure the 8100 unit, including specify sensitivity levels, configure relays, and establish action plans with customizable email notifications
- Monitor active units either remotely via the software or globally via any Internet browser through FAAST’s integral TCP/IP connectivity
- PipeIQ is included with each FAAST shipment and can also be downloaded at www.systemsensor.com/faast

Honeywell Analytics also has a design and technical support team for more personalized assistance to designers and those writing specifications.
Does FAAST include micron-type filters like other ASDs on the market?

Yes, the FAAST device offers a unique three-stage filtration process. First, the sampled air passes through a patented Particle Separator that segregates large particles that are not associated with elements of combustion. The Particle Separator requires no cleaning or maintenance. Once the sample passes through the Particle Separator, it goes through a replaceable 30 micron filter to further strip nuisance-based particles from the sample. Finally, as described above, advanced algorithms calculate the signals generated by the two detection sources to further eliminate nuisance particulate from the sample and determine whether an alarm should be initiated. Due to the particulate eliminated by the Particle Separator, the replaceable 30 micron filter is rated for 4 years normal usage (double that of competitive units) prior to requiring maintenance for cleaning/replacement, reducing periodic costs.

My Data Center is required to run 24 hours a day, 7 days a week, 52 weeks a year. Can FAAST accommodate the environmental changes that often occur in this type of application?

FAAST includes Honeywell Analytics' proven Acclimate mode, which enhances performance by automatically adjusting sensitivity based on environmental conditions. An allowable range of sensitivity levels are user defined and FAAST makes necessary adjustments to provide the most sensitive setting while accounting for environmental baseline conditions to further reduce false alarms. Additionally, the Acclimate mode allows FAAST to become operational in a mere 24 hours rather than the 15 days required by competitive ASDs.

What is the typical interface to a Fire Alarm Control Panel (FACP)?

The FAAST 8100 is a conventional device with 8 dry contact relays corresponding to the 5 Alarms (Alert, Alarm 1, Alarm 2, Fire 1 and Fire 2), 2 Trouble (Minor Fault, Major Fault) and Isolate conditions. Therefore, one could connect an 8100 unit to a fire alarm control panel via addressable monitor modules or addressable multi-monitor modules (10) via the 8 alarm/trouble dry contact relays.

Can I buy a high level interface to provide the necessary communication to a group of FAAST units?

A costly high level interface is not required with the FAAST 8100 model due to its integral TCP/IP connectivity. Typically, a high level interface is required to identify the location of the initiating device. However, due to FAAST's TCP/IP connectivity, up to six individuals can be sent e-mail notifications that discretely identify which unit is the initiating device and the location and details of the event. For example, events such as initiation of one of the five alarm levels or ten trouble conditions can be communicated. This provides the responding personnel the information necessary to investigate the event, run their operations efficiently, and most importantly, mitigate risk.

Do the pipe network sampling points need to be cleaned? If so, how often?

Annual testing/cleaning is recommended. Vacuum (preferred) or compressed air cleaning of the sampling points is to be conducted annually or as required depending on the application (similar to the testing and cleaning of a standard open area detector). Annual testing of the furthest sampling point is conducted via a smoke source and the transport time is measured to ensure that it is within the allowable requirement. Local jurisdictions may require that each sampling point be tested as well.

Where does Honeywell Analytics manufacture the FAAST Aspiration Detector?

The FAAST 8100 is manufactured in the United States at our St. Charles, IL. facility.

Where can I learn more about the Honeywell Analytics FAAST Fire Alarm Aspiration Sensing Technology?

You can visit the FAAST product page on the Honeywell Analytics website: http://www.honeywellanalytics.com/en-US/products/HighTechGovernmentSystems/FAAST/Pages/FAAST.aspx. This page includes a host of resources that provide information on how FAAST can reduce false alarms, resolve difficult applications and grow your business.