Manuel technique

Bus de terrain Foundation Fieldbus de l'émetteur XNX

Table des matières

Introduction4
Présentation4
Description du produit4
Bus de terrain Foundation Fieldbus4
Glossaire
Câblage
Mise en service10
Configuration10
Description de l'appareil10
Description des blocs11
Bloc de fonction (entrée analogique) 11
Bloc de ressource11
Bloc transducteur du capteur 11
Opérations de bloc communes11
Commandes spécifiques : bloc de ressource12
WRITE_LOCK12
FEATURES_SEL12
Paramètres spécifiques : bloc transducteur du capteur12
Paramètres spécifiques : bloc d'entrée analogique13
L_TYPE13
XD_SCALE et OUT_SCALE13
Données d'état : bloc d'entrée analogique14
Mode de simulation : bloc d'entrée analogique14
Mode manuel14
Mode de simulation15
Fonctionnement
Configuration17
Historique des événements18
Test19
Étalonnage20
Procédure d'étalonnage d'échantillons21
Tableaux de paramètres et d'erreurs24
Description des paramètres du bloc de ressource
Vues des paramètres du bloc de ressource26
Paramètres du bloc transducteur28
Description des paramètres du bloc d'entrée analogique
Vues des paramètres du bloc d'entrée analogique
Erreurs de configuration du bloc

Enregistrement de l'appareil par Fieldbus Foundation	38
Garantie	40
Déclaration de garantie	40
Conditions de garantie	40
Réclamations des consommateurs	41
Index	42

Introduction

Présentation

Le présent manuel est destiné à aider l'utilisateur à installer, utiliser et entretenir l'émetteur universel XNX doté de l'option de communication par bus de terrain Foundation Fieldbus. L'utilisateur est supposé maîtriser les principes de fonctionnement du protocole du bus de terrain Foundation Fieldbus, des émetteurs universels XNX, ainsi que du système de contrôle d'hôte spécifique utilisé¹. Nous recommandons aux utilisateurs de contacter directement le fournisseur du système hôte lorsqu'ils ont des questions de configuration spécifiques à leur système. Nous leur recommandons également de consulter le manuel technique de l'émetteur universel XNX avant de lire le présent manuel.

Description du produit

Le bus de terrain Foundation Fieldbus est l'une des trois options de communication disponibles pour l'émetteur universel XNX. L'option Bus de terrain Foundation Fieldbus est un protocole de communication entièrement numérique, conforme aux normes de Fieldbus Foundation. L'unité peut ainsi communiquer avec des systèmes de contrôle d'hôte fournis par des fabricants, conformément aux normes de fonctionnement des bus de terrain Foundation Fieldbus. Étant donné que ce type de plate-forme de système de contrôle utilise un réseau en « bus » de communication à l'échelle de l'usine, le câblage est effectué en se connectant au réseau au niveau de n'importe quel point proche du processus.

Bus de terrain Foundation Fieldbus

Le bus de terrain Foundation Fieldbus est utilisé dans le contrôle et la surveillance des processus. Le contrôle des processus désigne la surveillance et la régulation des processus continus tels que les flux, la température ou les niveaux de réservoir. Ces types de processus sont généralement mis en place dans des raffineries de pétrole, des usines chimiques et des papeteries.

Le bus de terrain Foundation Fieldbus peut également être utilisé pour la surveillance longue distance via le contrôle distribué, ce qui signifie que le contrôle est effectué par les appareils et non par un ordinateur de surveillance. Les appareils d'entrée, de sortie et de contrôle des processus configurés sur un réseau bus de terrain peuvent s'exécuter indépendamment d'un système informatique.

Le bus de terrain Foundation Fieldbus est un système de communication entièrement numérique, bidirectionnel et multipoint, qui fournit aux instruments de détection de gaz des algorithmes de

¹ Les illustrations du présent manuel ont été faites à l'aide d'un contrôleur d'hôte Honeywell Experion. D'autres contrôleurs d'hôte sont disponibles.

contrôle. Il prend en charge le codage numérique des données et de nombreux types de messages. À la différence de bon nombre de systèmes traditionnels, qui requièrent un jeu de câbles pour chaque appareil, il est possible de connecter plusieurs bus de terrain Foundation Fieldbus à l'aide d'un seul jeu de câbles. Le bus de terrain Foundation Fieldbus permet de surmonter certains inconvénients des réseaux propriétaires, car il fournit un réseau standardisé pour connecter les systèmes et les appareils.

Glossaire

Terme	Description		
blindage en tresse d'acier	Type de câble en faisceau, doté d'une enveloppe tissée et conçu pour empêcher toute interférence radioélectrique et protéger contre l'abrasion		
bornier	Connecteurs électriques regroupant les circuits de câbles d'un appareil à un seul emplacement		
bus de terrain	Protocole de communication entre les appareils sur le terrain et le système de contrôle		
commutateur de simulation	Commande permettant de mettre hors service un appareil à des fins de test		
contrôleur d'hôte	Composant surveillant tous les appareils de terrain sur le réseau		
DD	Description d'appareil		
ECC	Cellule électrochimique		
EPKS	Experion Process Knowledge System		
étalonnage du point de consigne dynamique	Exercice permettant d'indiquer la courbe de concentration du gaz d'étalonnage dans un transmetteur/capteur		
étalonnage du zéro	Exercice permettant d'indiquer la courbe de concentration du gaz zéro dans un transmetteur/capteur		
IR	infrarouge		
joint torique	Joint flexible en forme de tore, qui est comprimé pour créer un joint entre deux pièces rigides		
mA	milliampère, 1/1000ème d'ampère		
mV	millivolt, 1/1000ème de volt		
perle de ferrite	Composant supprimant les interférences radioélectriques et électromagnétiques		
Searchline Excel	Détecteur de gaz à barrière, qui surveille la présence de gaz entre la source et les détecteurs sur une longueur de trajectoire spécifique		
Softwlock	Option logicielle permettant d'empêcher un utilisateur de modifier les paramètres d'un appareil de type bus de terrain		
test fonctionnel	Exercice durant lequel les fonctionnalités d'un capteur sont vérifiées en l'exposant à une concentration de gaz supérieure au seuil de déclenchement des alarmes		
	% LIE : pourcentage de limite inférieure d'explosivité		
unités	% vol : pourcentage du volume		
d'ingénierie	PPM : parties par million		
	mg/m3 : milligramme par mètre cube		

Câblage

Un système Fieldbus Foundation remplace les boucles de courant analogiques de 4 à 20 mA présentes dans les autres bus de terrain par une ligne à deux fils reliant la station de contrôle au terrain. Ce câble de bus relie tous les appareils en parallèle. Les informations du système sont transmises de manière numérique. L'émetteur de gaz XNX prend en charge la plupart des protocoles de communication numériques (HART, MODBUS, bus de terrain Foundation Fieldbus, etc.), ainsi qu'une sortie discrète (relais). Tous ces protocoles sont dérivés du canal de sécurité principal : la sortie analogique (4 à 20 mA).

Avant l'installation, consultez le guide de câblage de Fieldbus Foundation (*wiringinstallationguide.pdf*, disponible à l'adresse http:// www.fieldbus.org²). La plupart des schémas de câblage communs sont présentés dans les figures 1 et 2. Consultez le guide de câblage pour d'autres topologies.

Figure 1: Réseau bus de terrain simple doté d'un seul émetteur XNX

Toutes les installations doivent être effectuées conformément aux règlements locaux et aux politiques de site.

² Fieldbus Foundation > End User Resources (Ressources de l'utilisateur final) > Technical References (Références techniques) > Wiring & Installation Application Guide (Guide de câblage et d'application de l'installation) – accès le 10 septembre 2010

Figure 2: Réseau bus de terrain doté d'un émetteur XNX et d'appareils supplémentaires

Un câble blindé doit être utilisé pour connecter l'émetteur XNX. La terminaison de blindage du câble du bus de terrain Foundation Fieldbus doit être effectuée au niveau du point d'entrée dans l'émetteur. Pour ce faire, utilisez un presse-étoupe adapté afin de pouvoir effectuer la terminaison de blindage au niveau de la garniture. (N'effectuez pas la terminaison de blindage du câble de communication du bus de terrain Foundation Fieldbus au niveau de la cosse de mise à la terre/masse interne de l'émetteur.) Dans l'émetteur, les connexions au bus de terrain Foundation Fieldbus s'effectuent via un bornier encastrable situé sur la carte d'option du bus de terrain Foundation Fieldbus, comme indiqué sur la figure 3. Un commutateur de simulation (SW5) est inclus sur la carte afin de pouvoir activer/désactiver le mode de simulation. Le câble H1 du bus de terrain Foundation Fieldbus est connecté via les bornes 3-1 et 3-3. La borne 3-1 est connectée en interne à la borne 3-2. De la même manière, la borne 3-3 est connectée en interne à la borne 3-4. Les bornes 3-5 et 3-6 permettent de relier à la terre le câble de mise à la terre du bus de terrain Foundation Fieldbus (voir la figure 3).

Figure 3: Carte d'option et bornier du bus de terrain Foundation Fieldbus de l'émetteur XNX

Mise en service

Installez et configurez l'émetteur XNX avant de mettre en service la carte d'option du bus de terrain Foundation Fieldbus. Durant les étapes finales du démarrage, des avertissements et des erreurs peuvent être observés jusqu'à la fin des activités de configuration, d'étalonnage et de réinitialisation.

Configuration

Cette section fournit des informations détaillées sur le démarrage et le fonctionnement de la partie communication de l'émetteur. Elle inclut également des informations détaillées sur tous les blocs de fonction actifs.

Description de l'appareil

Un fichier « descripteur d'appareil » (DD) spécifique a été généré pour cet appareil et enregistré auprès de Fieldbus Foundation. Le fichier DD se trouve sur le CD du produit. Ce fichier doit être chargé sur le système de contrôle d'hôte avant l'installation et la configuration de l'unité. Si nécessaire, il peut également être obtenu sur le site Web de Fieldbus Foundation (*www.fieldbus.org*³) :

- 1. Accédez à « End User Resources » (Ressources de l'utilisateur final).
- 2. Cliquez sur « Registered Products » (Produits enregistrés).
- 3. Dans la liste déroulante Manufacturer (Fabricant), sélectionnez « Honeywell Field Solutions » (Solutions de terrain Honeywell).
- 4. Sélectionnez « Analytical » (Analytique) dans la liste de catégories.
- 5. Cliquez sur « Search » (Rechercher).
- 6. Cliquez sur « XNX Universal Transmitter » (Émetteur universel XNX).
- 7. Cliquez sur « Download DD/CFF file » (Télécharger le fichier DD/ DCF) pour lancer le téléchargement.

Une fois installé, le système hôte pourra communiquer correctement avec l'émetteur universel XNX. Pour de plus amples informations sur le fonctionnement et l'installation des fichiers DD, contactez directement le fabricant du système de contrôle d'hôte.

³ Accès le 3 février 2011

Description des blocs

Tous les bus de terrain sont disposés suivant une configuration de fonctionnement de type « bloc ». Fieldbus Foundation a défini un ensemble de normes devant être respectées par chaque unité. Ainsi, les informations détaillées sur les blocs restent cohérentes entre les produits et les fabricants. Un niveau spécifiquement conçu, qui regroupe les paramètres spécifiques au fabricant, fonctionne comme son nom l'indique. À ce niveau, Fieldbus Foundation permet aux fabricants d'ajouter des fonctions spécifiques à leurs appareils. Des informations supplémentaires sur les définitions et les descriptions se trouvent sur le site *www.fieldbus.org*⁴.

Bloc de fonction (entrée analogique)

Le bloc de fonction est composé d'une série de paramètres constituant la base du contrôle et du fonctionnement du système. Fieldbus Foundation a défini des ensembles standard de blocs de fonctions. Ces blocs sont disponibles pour la communication entrante et sortante via le réseau.

Les fonctions principales du bloc d'entrée analogique (AI) consistent à traiter les signaux entrants en provenance du capteur (concentration en gaz dans notre cas) et à mettre à disposition les données afin qu'elles puissent être utilisées dans d'autres blocs de fonctions. Ces données sont formatées dans des unités d'ingénierie définies par l'utilisateur.

Bloc de ressource

Chaque appareil possède un bloc de ressource. Celui-ci permet de décrire les caractéristiques de l'appareil. Des paramètres tels que le nom de l'appareil, le fabricant et le numéro de série sont enregistrés dans ce bloc. Aucun paramètre corrélé ne se trouve dans ce bloc.

Bloc transducteur du capteur

Le bloc transducteur du capteur contient des données de configuration spécifiques à l'appareil. Des données telles que le type de capteur et la date d'étalonnage se situent dans ce bloc.

Opérations de bloc communes

Chacun des blocs se trouvant dans l'émetteur partage un ensemble commun de modes de programmation. Lorsque l'utilisateur définit un mode de fonctionnement spécifique, il peut ensuite forcer la sortie de l'émetteur vers le bus de réseau.

Manuel technique du bus de terrain Foundation Fieldbus pour le XNX

⁴ Accès le 10 septembre 2010.

Description	Fonction
AUTO	Mode de fonctionnement normal. L'ensemble des entrées de données, des calculs et des sorties de données du bloc fonctionnent
Out Of Service (OOS, hors service)	Définissez le mode de fonctionnement sur OOS pour désactiver toutes les exécutions de fonctions par le bloc.

Commandes spécifiques : bloc de ressource Cette section décrit des commandes communes, disponibles dans le bloc de ressource.

WRITE_LOCK

Le paramètre WRITE_LOCK permet d'éviter tout changement de paramètres au sein de l'appareil. Lorsqu'il est activé, la seule commande accessible est WRITE-LOCK, afin que le paramètre puisse être effacé. Lorsqu'il est effacé, l'appareil est de nouveau accessible en écriture. Dans ce cas, une alerte est générée par le paramètre WRITE_ALM pour indiquer qu'un changement a été apporté. La priorité d'alarme correspond au paramètre WRITE_PRI.

FEATURES_SEL

La commande FEATURES_SEL permet d'activer et de désactiver des fonctions supplémentaires prises en charge par l'appareil. Actuellement, les paramètres REPORTS, SOFTWLOCK, ainsi que les paramètres d'alarme sur plusieurs bits sont pris en charge.

Paramètres spécifiques : bloc transducteur du capteur

Cette section décrit des commandes communes disponibles dans le bloc transducteur du capteur.

- Informations
- Test
- Étalonnage (zéro/point de consigne dynamique)
- Configuration

Ce bloc ne contient pas de paramètres permettant de modifier des unités d'ingénierie. Les modifications peuvent être effectuées via le bloc d'entrée analogique. Les unités composant le bloc transducteur du capteur effectuent un suivi automatique des valeurs programmées par le paramètre XD_SCALE. Paramètres spécifiques : bloc d'entrée analogique Les commandes suivantes sont disponibles dans le bloc AI :

L_TYPE

Ce paramètre permet de définir la relation entre la valeur de processus mesurée (bloc transducteur du capteur) et la sortie du bloc Al. Le XNX prend en charge tous les types de linéarisation. Définissez ce paramètre sur DIRECT pour transmettre des informations au bloc transducteur sans les modifier (c.-à-d. que la sortie du bloc Al sera identique à celle du bloc transducteur). Les valeurs entre le bloc transducteur du capteur et le bloc Al resteront linéaires.

XD_SCALE et OUT_SCALE

Ces paramètres permettent de définir les unités d'ingénierie et les facteurs de mise à l'échelle associés aux données entrant dans le bloc AI et celles générées par celui-ci. Chacun des paramètres peut être défini sur 0 %, 100 % ou sur des unités d'ingénierie associées. Ces paramètres sont programmés différemment en fonction de la valeur sélectionnée pour le paramètre L_TYPE.

Les unités d'ingénierie prises en charge sont PPM, % LIE, LIEm, mg/ m³ et % VOL⁵. Pour éviter toute erreur de configuration, sélectionnez UNIQUEMENT des unités prises en charge par l'appareil. Les unités d'ingénierie sont en lecture seule.

L_TYPE = DIRECT

Lorsque la sortie souhaitée pour le bloc Al est identique à la valeur mesurée. Les paramètres sont les suivants :

XD_SCALE = identique à la plage de traitement

OUT_SCALE = défini sur la même valeur que XD_SCALE

Exemple :

La ligne de description du processus prévoit 0-100 % LIE, % LIE étant la sortie souhaitée.

XD_SCALE 0-100 % LIE

OUT_SCALE 0-100 % LIE

Le paramètre XD_SCALE est en lecture seule.

Manuel technique du bus de terrain Foundation Fieldbus pour le XNX

⁵L'utilisateur doit créer ces unités d'ingénierie si elles ne sont pas répertoriées dans le système de contrôle d'hôte.

Alarmes de processus

Les données de sortie générées par le bloc AI sont comparées aux valeurs programmées dans les alarmes. Si une valeur a été atteinte, l'alarme associée est lancée. Les alarmes disponibles sont les suivantes :

HI_LIM = alarme élevée

HI_HI_LIM = alarme très élevée

LO_LIM = alarme faible

LO_LO_LIM = alarme très faible

Les alarmes HI_LIM, HI_HI_LIM, LOW_LIM, LOW_LOW_LIM sont utilisées par le bloc AI dans l'hôte.

Données d'état : bloc d'entrée analogique

En mode de fonctionnement normal, des valeurs réelles ou calculées sont transmises du bloc transducteur du capteur au bloc AI à des fins de traitement. Une condition STATUS est également envoyée avec ces données. Les conditions potentielles sont les suivantes :

STATUS = GOOD, aucun problème avec le matériel ou les données

STATUS = BAD, problèmes détectés au niveau du matériel ou des données transmises par le bloc transducteur du capteur

STATUS = UNCERTAIN

La zone STATUS est utilisée par le bloc AI dans l'hôte.

Mode de simulation : bloc d'entrée analogique

Lors des tests, il est possible de forcer la sortie des données du bloc Al. Cette procédure pourrait être utilisée pour tester une fonction de contrôle ou le fonctionnement de l'appareil en aval qui a reçu les données. Il existe deux méthodes pour la sortie de données :

Mode manuel

Le mode manuel force la définition des données de sortie du bloc Al sur la valeur souhaitée. L'état du paramètre STATUS ne change pas. Pour lancer le mode manuel, définissez le paramètre TARGET MODE du bloc Al sur MANUAL. Vous pouvez désormais modifier le paramètre OUT.VALUE afin de refléter la valeur de sortie souhaitée.

Mode de simulation

Le mode de simulation force la définition des données de sortie du bloc AI sur une valeur souhaitée. Il définit également le paramètre STATUS sur la valeur correspondante. Pour lancer le mode de simulation :

- Placez le commutateur SIM situé sur l'émetteur sur la position ON (EN MARCHE). Le commutateur SIM se situe à l'arrière de l'émetteur, au-dessus de la borne de connexion du bus de terrain Foundation Fieldbus. L'appareil est désormais en mode de simulation.
- 2. Définissez le paramètre TARGET MODE sur AUTO pour modifier les paramètres OUT.VALUE et OUT.STATUS.
- 3. Définissez le paramètre SIMULATE_ENABLE_DISABLE sur l'état ACTIVE.
- Saisissez la valeur souhaitée dans le paramètre SIMULATE_ VALUE afin de forcer la sortie du paramètre OUT.VALUE et définissez le paramètre OUT.STATUS sur la valeur correcte.

Si des erreurs se produisent durant l'exécution de cette procédure, réinitialisez le commutateur SIM. Les conditions d'erreur seront ainsi effacées et l'appareil sera de nouveau fonctionnel.

Fonctionnement

L'interface du bus de terrain Foundation Fieldbus pour le XNX facilite l'accès à distance à toutes les fonctions de l'interface utilisateur locale, notamment l'affichage d'états, les tests, l'étalonnage et la configuration. Un fichier DD est obligatoire pour interagir avec l'émetteur XNX. Les écrans suivants présentent certaines des fonctions de l'interface du bus de terrain Foundation Fieldbus pour l'émetteur XNX lors de l'utilisation d'un système Experion en tant que contrôleur d'hôte.

Figure 4: Présentation des données XNX par Experion (affichage du simulateur)

Configuration

Tous les paramètres utilisateur de l'émetteur XNX peuvent être définis au niveau de l'interface utilisateur locale ou via le bus de terrain Foundation Fieldbus. Le menu de configuration facilite la configuration des niveaux d'alarme, comme indiqué dans la figure 6. Il est également possible de configurer l'heure, les unités et d'autres paramètres.

HONEYWELL:XNX_0101.AIT	B Block, AITB - Parameters [Monitoring]	<u>? ×</u>
Process Alarm Alarm2	Maintenance Tune Other Identification	
Cault Aufaur Mumber		_
Fault/Wain Number	-NA	
Reset Alarms and Faults	Select	
LAL Absolute	5	
UAL Range	25	
LAL Range	5	
Minimum Sensor Limit	25	
Maximum Sensor Limit	25	
Alarm 1 Threshold	22.5	
Alarm 2 Threshold	18.5	
Display Range	25	
Display Range Lower	0	
Alarm Configuration		
🔲 Alarm 1 on Descend	ding Concentration	
Alarm 2 on Descend	ding Concentration	
🔲 Alarm 1 Latching		
Alarm 2 Latching		
Reserved		
Reserved		
Faults Latching		
Config State	Accepted	
Update Alarm Ranges	Select	
Simulate Alarms Faults	Select	-
Show Parameter Names	OK	Cancel Help

Figure 5: Écran de configuration du bus de terrain Foundation Fieldbus

Historique des événements

L'émetteur XNX conserve un enregistrement de tous les événements significatifs auquel il est possible d'accéder à partir de l'interface du bus de terrain Foundation Fieldbus. L'ensemble des alarmes, des avertissements et des erreurs sont enregistrés. En outre, plus de 60 types d'événements informatifs sont définis afin d'enregistrer d'importantes transactions telles que les réétalonnages ou les changements apportés à la configuration. Chaque événement est horodaté et 1 280 enregistrements sont conservés. La figure 6 présente l'historique des événements d'un écran Experion.

- ncess Alarm Alarm2 Maint	nance Tune Other Identification	
Path Length HiLim		
Path Length	0	
Sensor Life	653	
Config Change State	Accepted	
Accept Excel Fault Parameters	Select	
: Inhibit	2	
w Warning	3	
0 Overrange	21	
B Beam Blocked	1	
L Low Signal	1	
Filter by	All Events	
Goto	Select	
EVENT_HISTORY		
Time	01/01/70 00:00:00	
Туре	RESET	
Sub Type	0	
Parameter	0	
Index	0	
MaxIndex	647	
		a l u

Figure 6: Affichage de l'historique des événements du bus de terrain Foundation Fieldbus

Test

Le menu Test fournit des méthodes d'exécution de tâches communes telles que la désactivation de la sortie, l'utilisation de la sortie analogique ou la simulation d'alarmes ou d'erreurs. La figure 7 correspond à la vue de test Experion.

HONEYWELL:XNX_0101.AITB E	Block, AITB - Parameters [Monitoring]	<u>?</u> ×
Process Alarm Alarm2 Ma	aintenance Tune Other Identification	
· · · ·		<u> </u>
Fault/Warn Number	NA	
Reset Alarms and Faults	Select	
LAL Absolute	5	
UAL Range	25	
LAL Range	5	
Minimum Sensor Limit	25	
Maximum Sensor Limit	25	
Alarm 1 Threshold	22.5	
Alarm 2 Threshold	18.5	
Display Range	25	
Display Range Lower	0	
Alarm Configuration		
🔲 Alarm 1 on Descendin	g Concentration	
🔽 Alarm 2 on Descendin	g Concentration	
🔲 Alarm 1 Latching		
Alarm 2 Latching		
Reserved		
Reserved		
Faults Latching		
Config State	Accepted	
Update Alarm Ranges	Select	
Simulate Alarms Faults	Select	Ŧ
Show Parameter Names		OK Cancel Help

Figure 7: Écran de test du bus de terrain Foundation Fieldbus

Étalonnage

Le menu Calibration (Étalonnage) permet d'effectuer un étalonnage du zéro ou du point de consigne dynamique, ainsi que des tests fonctionnels. En outre, lorsque l'appareil est doté d'un détecteur de gaz Searchline EXCEL, le menu d'étalonnage affiche l'intensité du signal optique pour l'alignement mécanique. L'opération d'étalonnage du gaz est présentée dans la figure 8 et détaillée dans la procédure suivante.

HONEYWELL:XNX_0101.AITB Blo	ck, AITB - Parameters [Mor	nitoring]			? ×
Process Alarm Alarm2 Maint	enance Tune Other Iden	tification			
Soft Reset	Select	-			-
Raw Gas Concentration	20.82948				
Long Term Inhibit	Select	•			
Inhibit Status					
O Inhibit by Local User					
O Inhibit by HART User					
O Inhibit by FF User					
O Future Use					
O Long Term Inhibit					
C Future Use					
O Future Use					
O Future Use					
Target Conc	20.8				
Calibration Command	Select	×			
Input Range	Reserved				
Calibration Status	Calibration Menu State	_			
Bump Test	Select	_			
Align Excel	Select	•			
Monitoring State	Normal Monitoring				
Analog Output (mA)	17.37598				
Calibrate analog current output	Select	•			
Adjust DAC Setting	Select				
Force Analog Current Output	Return to Normal Operation				•
Show Parameter Names			ОК	Cancel	Help

Figure 8: Écran d'étalonnage du bus de terrain Foundation Fieldbus

Procédure d'étalonnage d'échantillons

Cette procédure varie en fonction du type de capteur connecté à l'émetteur universel XNX.

- 1. Connectez le capteur à l'émetteur XNX.
- 2. Connectez l'unité portable du bus de terrain Foundation Fieldbus et établissez la communication avec l'émetteur XNX.
- 3. Accédez au menu Device Calibration (Étalonnage de l'appareil) sur l'interface utilisateur du bus de terrain Foundation Fieldbus.
- 4. Vérifiez l'état d'étalonnage. Le message « In Calibration Menu State » (État Dans le menu d'étalonnage) s'affiche.
- Sélectionnez « Start Calibration » (Démarrer l'étalonnage). Une fenêtre s'affiche indiquant le message « Processing Request » (Traitement de la demande), puis « Calibration Status. Apply Zero Air » (État d'étalonnage. Appliquer de l'air zéro).
- 6. Sélectionnez « Finish » (Terminer). La fenêtre se ferme et l'état d'étalonnage passe à « Apply Zero Air » (Appliquer de l'air zéro).
- 7. Appliquez l'air zéro (ambiant) au capteur.
- Sélectionnez « Next Step » (Étape suivante). Une fenêtre s'affiche indiquant le message « Processing Request » (Traitement de la demande), puis « Wait until raw conc. is stable and in range » (Attendre jusqu'à ce que la conc. brute soit stable et dans la plage).
- Sélectionnez « Finish » (Terminer). La fenêtre se ferme et l'état d'étalonnage passe à « Wait until raw conc. is stable and in range » (Attendre jusqu'à ce que la conc. brute soit stable et dans la plage). La concentration brute sera d'environ 0,0000. La plage d'entrée sera « in range » (dans la plage).
- Sélectionnez « Next Step » (Étape suivante). Le message « Processing Request » (Traitement de la demande) s'affiche, puis « Press NEXT to Start Zero Calibration » (Appuyer sur SUIVANT pour démarrer l'étalonnage du zéro).
- Sélectionnez « NEXT » (SUIVANT). Une fenêtre s'affiche indiquant le message « Processing Request » (Traitement de la demande), puis « Calibration Status: Processing calibration » (État d'étalonnage : traitement de l'étalonnage).
- Sélectionnez « Finish » (Terminer). La fenêtre se ferme et l'état d'étalonnage affiche « Processing Calibration » (Traitement de l'étalonnage).

- 13. Si l'étalonnage du zéro échoue, l'état d'étalonnage passe à « Zero Cal Failed. Press End Cal and Start Over » (Échec de l'étalonnage du zéro. Appuyer sur Mettre fin à l'étalonnage et Recommencer). Passez à l'étape 23 pour mettre fin à l'étalonnage et en redémarrer un nouveau. Si l'étalonnage du zéro aboutit, l'état d'étalonnage passe à « Zero Cal Success. Press Next Step » (Étalonnage du zéro réussi. Appuyer sur Étape suivante). Sélectionnez « Next Step » (Étape suivante). Une fenêtre s'affiche indiquant le message « Processing Request » (Traitement de la demande), puis « Calibration Status: Apply Target Concentration » (État d'étalonnage : appliquer la concentration cible).
- 14. Sélectionnez « Next » (Suivant).
- 15. Saisissez la concentration cible souhaitée (par exemple, 50 % LIE).
- 16. Sélectionnez « Next » (Suivant). Une fenêtre s'affiche indiquant le message « Processing Request » (Traitement de la demande), puis « Target Concentration Being Accepted. Check Calibration Status » (Concentration cible en cours d'acceptation. Vérifier l'état d'étalonnage).
- 17. Sélectionnez « Finish » (Terminer). La fenêtre se ferme.
- 18. Appliquez le gaz spécifié (par exemple, 50 % LIE) au capteur.
- Sélectionnez « Next Step » (Étape suivante). Une fenêtre s'affiche indiquant le message « Processing Request » (Traitement de la demande), puis « Press NEXT To Start Span Cal » (Appuyer sur SUIVANT pour démarrer l'étalonnage du point de consigne dynamique).
- Sélectionnez « Next » (Suivant). Une fenêtre s'affiche indiquant le message « Processing Request » (Traitement de la demande), puis « Calibration Status: Processing calibration » (État d'étalonnage : traitement de l'étalonnage).
- 21. Sélectionnez « Finish » (Terminer). La fenêtre se ferme.
- 22. L'état d'étalonnage affiche un message « Processing calibration » (Traitement de l'étalonnage). Si l'étalonnage du point de consigne dynamique échoue, l'état d'étalonnage passe à « Span Cal Failed. Press Next Step to Retry » (Échec de l'étalonnage du point de consigne dynamique. Appuyer sur Étape suivante pour réessayer). Répétez les étapes 14 à 21. Si l'étalonnage du point de consigne dynamique aboutit, l'état d'étalonnage passe à « Span Cal Success. Press End Calibration » (Réussite de l'étalonnage du point de consigne dynamique. Appuyer sur Mettre fin à l'étalonnage).

- 23. Sélectionnez « End Calibration » (Mettre fin à l'étalonnage). Une fenêtre s'affiche indiquant le message « Processing Request » (Traitement de la demande), puis « Calibration Status: Calibration Menu State » (État d'étalonnage : état Menu d'étalonnage).
- 24. Sélectionnez « Finish » (Terminer). La fenêtre se ferme.

Tableaux de paramètres et d'erreurs

Description des paramètres du bloc de ressource

Index	Mnémonique du paramètre	Description			
1	ST_REV	Niveau de révision des données statiques associées à ce bloc			
2	TAG_DESC	Permet d'identifier des regroupements de blocs			
3	STRATEGY	Informations sur les utilisateurs			
4	ALERT_KEY	Identificateur de l'unité d'usine			
5	MODE_BLK	Contient les modes disponibles pour le bloc			
6	BLOCK_ERR	Contient un état d'erreur			
7	RS_STATE	État du bloc de fonction			
8	TEST_RW	Utilisé uniquement pour les tests de conformité			
9	DD_RESOURCE	Chaîne déterminant le numéro d'identification de la ressource			
10	MANUFAC_ID	Calcul de l'identificateur du fabricant = 0x48574C			
11	DEV_TYPE	Permet de rechercher le fichier DD			
12	DEV_REV	Numéro de révision de fabrication			
13	DD_REV	Numéro de révision du fichier DD			
14	GRANT_DENY	Options permettant de contrôler l'accès à l'hôte			
15	HARD_TYPES	Types de matériel disponibles par numéro de canal			
16	RESTART	Permet de lancer un redémarrage			
17	FEATURES	Indique les options du bloc de ressource prises en charge			
18	FEATURE_SEL	Permet de sélectionner les options du bloc de ressource			
19	CYCLE_TYPE	Méthodes d'exécution de blocs d'identificateurs disponibles			
20	CYCLE_SEL	Permet de sélectionner une méthode d'exécution pour cette ressource			
21	MIN_CYCLE_T	Durée de l'intervalle de cycle le plus court			
22	MEMORY_SIZE	Mémoire de configuration disponible dans la ressource vide			

Index	Mnémonique du paramètre	Description		
23	NV_CYCLE_T	Intervalle entre plusieurs écritures dans la mémoire non volatile		
24	FREE_SPACE	Mémoire disponible (AIC = 0 %)		
25	FREE_TIME	Temps de traitement disponible (AIC = 0 %)		
26	SHED_RCAS	Durée au bout de laquelle abandonner l'écriture dans des emplacements RCAS		
27	SHED_ROUT	Durée au bout de laquelle abandonner l'écriture dans des emplacements ROUT		
28	FAULT_STATE	Défini par la perte de communication avec le bloc de sortie		
29	SET_FSTATE	Permet de définir manuellement un état d'erreur		
30	CLR_FSTAT	Permet d'effacer l'état d'erreur		
31	MAX_NOTIFY	Nombre maximum de notifications d'alerte non confirmées		
32	LIM_NOTIFY	Permet de définir le paramètre MAX_ NOTIFY		
33	CONFIRM_TIME	Durée minimale entre deux nouvelles tentatives de rapport d'alerte		
34	WRITE_LOCK	Permet de désactiver la capacité d'écriture		
35	UPDATE_EVT	Alerte générée par tout changement apporté aux données statiques		
36	BLOCK_ALM	Informations sur la défaillance du système		
37	ALARM_SUM	État d'alerte		
38	ACK_OPTION	Permet de sélectionner les alarmes à acquitter automatiquement		
39	WRITE_PRI	Priorité d'alarme générée par l'effacement du verrouillage en écriture		
40	WRITE_ALM	Alarme générée par l'effacement du verrouillage en écriture		
41	ITK_VER	Révision majeure du cas de test d'interopérabilité		

Index	Mnémonique du paramètre	Vue_1	Vue_2	Vue_3	Vue_4
1	ST_REV	2	2	2	2
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	
7	RS_STATE	1		1	
8	TEST_RW				
9	DD_RESOURCE				
10	MANUFAC_ID				4
11	DEV_TYPE				2
12	DEV_REV				1
13	DD_REV				1
14	GRANT_DENY		2		
15	HARD_TYPES				2
16	RESTART				
17	FEATURES				2
18	FEATURE_SEL		2		
19	CYCLE_TYPE				2
20	CYCLE_SEL		2		
21	MIN_CYCLE_T				4
22	MEMORY_SIZE				2
23	NV_CYCLE_T		4		
24	FREE_SPACE		4		
25	FREE_TIME	4		4	
26	SHED_RCAS		4		
27	SHED_ROUT		4		
28	FAULT_STATE	1		1	
29	SET_FSTATE				
30	CLR_FSTAT				
31	MAX_NOTIFY				1
32	LIM_NOTIFY		1		
33	CONFIRM_TIME		4		

.... ς. . . -

Index	Mnémonique du paramètre	Vue_1	Vue_2	Vue_3	Vue_4
34	WRITE_LOCK		1		
35	UPDATE_EVT				
36	BLOCK_ALM				
37	ALARM_SUM	8		8	
38	ACK_OPTION				2
39	WRITE_PRI				1
40	WRITE_ALM				
41	ITK_VER				2
	Totaux	22	30	22	31

Paramètres du bloc transducteur				
Index	Mnémonique du paramètre	Description		
1	ST_REV	Niveau de révision des données statiques associées à ce bloc		
2	TAG_DESC	Permet d'identifier des regroupements de blocs		
3	STRATEGY	Informations sur les utilisateurs		
4	ALERT_KEY	Numéro d'identification de l'utilisateur		
5	MODE_BLK	Contient les modes disponibles pour le bloc		
6	BLOCK_ERR	Contient un état d'erreur		
7	UPDATE_EVT	Ce paramètre est généré en cas de modification des données statiques du bloc		
8	BLOCK_ALM	Permet d'identifier la présence d'un problème dans le système		
9	TRANSDUCER_ DIRECTORY	Indique le nombre et les index de départ dans le bloc transducteur		
10	TRANSDUCER_ TYPE	Identification du type de transducteur		
11	XD_ERROR	Codes d'erreur supplémentaires		
12	COLLECTION_DIRECTORY	Indique le nombre, les index de départ et les identifications d'éléments DD		
13	PRIMARY_ VALUE	Valeur mesurée		
14	DATE_FORMAT	La classification d'un jour en tant que date spécifique du calendrier correspond au format utilisé pour exprimer cette date.		
15	STR_DEVICE_ DATE_TIME	Date et heure indiquées sur l'appareil		
16	TIME_DATE_ STAMP	Horodatage indiqué dans l'état de l'appareil		
17	SENSOR_TYPE	Identification du type de capteur connecté		
18	GAS_NAME	Identification du nom de gaz détecté par le capteur		
19	UNIT_STRING	Identification de l'unité de mesure du gaz du capteur		
20	SEN_SW_VER	Version du logiciel du capteur connecté		
21	SEN_SN	Numéro de série du capteur connecté		

Index	Mnémonique du paramètre	Description		
22	ZEN_SN	Numéro de série de l'appareil		
23	CURR_ALM_ LEVEL	Identifie le niveau d'alarme actuel dans l'appareil		
24	ACTIV_INSTR_ FAULT	Identifie l'erreur d'instrument active sur l'appareil		
25	RESET_ ALMS_N_FAULTS	Effectue une réinitialisation de toutes les alarmes et erreurs présentes sur l'appareil		
26	LOWER_ALM_LIMIT	Indique le seuil inférieur d'alarme de l'appareil		
27	UPPER_ALM_ LIMIT_RANGE	Indique le seuil maximum possible pour une alarme de l'appareil		
28	LOWER_ALM_LIMIT_ RANGE	Indique le seuil minimum possible pour une alarme de l'appareil		
29	DEVICE_MIN_RANGE	Indique la plage minimale possible pour l'appareil disposant d'un capteur connecté		
30	DEVICE_MAX_ RANGE	Indique la plage maximale possible pour l'appareil disposant d'un capteur connecté		
31	ALM_ THRESHOLDS_ LOW	Indique le seuil inférieur d'alarme		
32	ALM_THRESHOLDS_ HIGH	Indique le seuil supérieur d'alarme		
33	DISPLAY_RANGE	Indique la plage d'affichage pour l'appareil disposant d'un capteur connecté		
34	DISPLAY_ RANGE_LOWER	Indique le seuil inférieur de la plage d'affichage pour l'appareil disposant d'un capteur connecté		
35	RELAY_ALM_CFG	Identifie la configuration Alarme verrouillée et Alarme pouvant être supprimée		
36	CONFIG_STATE_ ALM	Alarme de configuration de l'état d'un appareil après un changement de configuration		
37	ACCEPT_ CONFIG_ CHANGE_ALM	État de configuration d'un appareil après l'acceptation par l'utilisateur de changements de configuration		

Index	Mnémonique du paramètre	Description
38	START_IR_POLLING	Demande de paramètres du capteur IR par l'appareil
39	POWER_SUPPLY	Alimentation mesurée par l'appareil, cà-d. alimentation de l'appareil
40	POWER_ SUPPLY_ VOLTAGE_33	Alimentation mesurée par la connexion de carte d'option, cà-d. alimentation de la carte d'option
41	POWER_SUPPLY_ VOLTAGE_SENS_240	Alimentation mesurée par le capteur connecté cà-d. alimentation du capteur
42	POWER_SUPPLY_ VOLTAGE_SENS_50	Alimentation mesurée par le capteur connecté (interne), cà-d. alimentation interne du capteur
43	WIN_TEMP	Température de la fenêtre, applicable au capteur IR (Excel) uniquement
44	SENSOR_TEMP	Température de l'appareil
45	UNIT_TEMP	Identification de l'unité de mesure de la température
46	RC_OPTICAL_ PARAMETERS	Paramètres optiques du capteur IR connecté
47	BLOCK_FAULT_ TIME	Identifie la durée nécessaire au capteur IR (Excel) pour détecter une erreur lorsque le faisceau est bloqué depuis plus longtemps que la valeur définie
48	OTHER_FAULT_ TIME	Identifie la durée nécessaire au capteur IR (Excel) pour signaler une erreur lorsque le faisceau est bloqué depuis plus longtemps que la valeur définie
49	LOW_SIGNAL_ LEVEL	Identifie le niveau de signal le plus faible pour le capteur IR (Excel) connecté à l'appareil
50	RESET_EXCEL	Réinitialisation du logiciel des capteurs IR (Excel/Optima)
51	RAW_GAS_ CONC	Indique la concentration de gaz mesurée par le capteur durant le processus d'étalonnage
52	INHIBIT_ DEVICE_LONG_ TERM	Identifie l'appareil désactivé par l'utilisateur depuis un certain temps

Index	Mnémonique du paramètre	Description	
53	INHIBIT_DEVICE_STATUS	Identifie l'état de désactivation de l'appareil	
54	SPAN_CAL_GAS_CONC	Indique la concentration de gaz pour l'étalonnage du point de consigne dynamique du capteur	
55	CLB_OPT	Indique les options d'étalonnage du capteur	
56 CLB_STATUS Indique l'état d'étalonn capteur		Indique l'état d'étalonnage du capteur	
57	CLB_HELP_ STATUS	Indique l'état de l'aide à l'étalonnage du capteur	
58	BUMP_TEST_ OPT	Indique qu'un test fonctionnel doit être effectué pour le capteur connecté de l'appareil	
59	CALIB_INTERVAL	Indique l'intervalle d'étalonnage du capteur	
60	SIMULATE_OPT	Indique la simulation d'état du capteur à partir de l'appareil	
61	ALIGN_EXCEL	Permet d'effectuer un alignement pour le capteur IR de type Excel	
62	CURR_MON_ STATE	Permet d'identifier l'état de surveillance de l'appareil	
63	RC_PATH_ LENGTH	Permet d'indiquer la longueur de trajectoire du capteur IR de type Excel	
64	SENSOR_LIFE	Permet d'indiquer la durée de vie restante du capteur	
65	CONFIG_STATE	État de configuration de l'appareil	
66	ACCEPT_ CONFIG_ CHANGE	État de configuration de l'appareil après l'acceptation des changements apportés à la configuration	
67	RC_MA_ SETTINGS	Réglages en mA de l'appareil	
68	ANLG_CURR_OP	Permet d'identifier le courant de sortie de l'appareil (4 à 20 mA)	
69	CLB_CURR_OP	Étalonnage du courant de sortie de l'appareil (4 à 20 mA)	
70	CLB_CURR_ DAC_CNT	Étalonnage du courant de sortie de l'appareil (4 à 20 mA) à l'aide des paramètres DAC	

Index	Mnémonique du paramètre	Description
71	FORCE_ANLG_ CURRENT	Permet de forcer le courant de sortie de l'appareil (4 à 20 mA)
72	GAS_NAME_SCROLL	Identifie le défilement de la liste des gaz pour le capteur connecté à l'appareil
73	INFO_CAL_ INDEX	Identifie l'index du gaz
74	CURR_CAL_ INDEX	Identifie l'index de défilement des index de gaz
75	SEL_GAS_CLB_ OPTION	Étalonnage du capteur connecté à l'appareil
76	MV_SENSOR_ TYPE_INDEX_ ACTUAL	Identifie l'index actuel du capteur mV connecté
77	MV_SENSOR_TYPE	Identifie le type de capteur mV connecté
78	MV_SENSOR_ TYPE_SCROLL	Identifie l'index de défilement du capteur mV connecté
79	MV_SENSOR_TYPE_INDEX	Identifie l'index du capteur mV connecté
80	MV_SEL_OPTION	Identifie les options de sélection du capteur mV
81	SEL_EVENT_ FILTER_TYPE	Indique le type de filtre des événements
82	SEL_EVENT_ HISTORY_OPT	Indique les options d'historique des événements
83	EVENT_HISTORY	Indique l'historique des événements

Description des paramètres du bloc d'entrée analogique			
Index	Mnémonique du paramètre	Description	
1	ST_REV	Niveau de révision des données statiques associées à ce bloc	
2	TAG_DESC	Permet d'identifier des regroupements de blocs	
3	STRATEGY	Informations sur les utilisateurs	
4	ALERT_KEY	Identificateur de l'unité d'usine	
5	MODE_BLK	Contient les modes disponibles pour le bloc	
6	BLOCK_ERR	Contient un état d'erreur	
7	PV	Valeur analogique principale	
8	OUT	Valeur analogique principale calculée	
9	SIMULATE	Permet la saisie manuelle de valeurs E/S	
10	XD_SCALE	Valeurs d'échelle et d'unité du bloc transducteur	
11	OUT_SCALE	Échelle et unité de ce bloc	
12	GRANT_DENY	Options permettant de contrôler l'accès aux ordinateurs hôtes et aux panneaux de contrôle locaux utilisés pour faire fonctionner l'appareil, le régler et définir des paramètres d'alarme	
13	IO_OPTS	Option pouvant être sélectionnée par l'utilisateur pour modifier le traitement du bloc E/S	
14	STATUS_OPTS	Option pouvant être sélectionnée par l'utilisateur au cours du traitement par bloc des états	
15	CHANNEL	Canal matériel logique connecté au bloc E/S	

Index	Mnémonique du paramètre	Description
16	L_TYPE	Détermine si les valeurs passées par le bloc transducteur au bloc AI peuvent être utilisées directement (mode Direct) ousi la valeur se trouve dans différentes unités et doit être convertie de façon linéaire (mode Indirect), ou encore en utilisantla racine carrée (Ind Sqr Root) pour la plage de valeurs d'entrées définies par le transducteur et la plage de valeurs de sorties associée
17	LOW_CUT	Seuil utilisé dans le traitement sq rt
18	PV_FTIME	Constante de temps d'un seul filtre exponentiel pour la variable de processus
19	FIELD_VAL	Valeur brute de l'appareil de terrain en pourcentage de la plage
20	UPDATE_EVT	Cette alerte est générée par tout changement apporté aux données statiques
21	BLOCK_ALM	Informations sur la défaillance du système
22	ALARM_SUM	État d'alerte
23	ACK_OPTION	Permet de sélectionner les alarmes à acquitter automatiquement
24	ALARM_HYS	Hystérésis d'alarme en %
25	HI_HI_PRI	Priorité d'alarme très élevée
26	HI_HI_LIM	Réglage de l'alarme très élevée
27	HI_PRI	Priorité de l'alarme élevée
28	HI_LIM	Réglage de l'alarme élevée
29	LO_PRI	Priorité de l'alarme faible
30	LO_LIM	Réglage de l'alarme faible
31	LO_LO_PRI	Priorité de l'alarme très faible
32	LO_LO_L IM	Réglage de l'alarme très faible
33	HI_HI_ALM	État de l'alarme très élevée
34	HI_ALM	État de l'alarme élevée
35	LO_ALM	État de l'alarme faible
36	LO_LO_ALM	État de l'alarme très faible

				N/ 0	
Index	Mnemonique du parametre	Vue_1	Vue_2	Vue_3	Vue_4
1	ST_REV	2	2	2	2
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	
7	PV	5		5	
8	OUT	5		5	
9	SIMULATE				
10	XD_SCALE		11		
11	OUT_SCALE		11		
12	GRANT_DENY		2		
13	IO_OPTS				2
14	STATUS_OPTS				2
15	CHANNEL				2
16	L_TYPE				1
17	LOW_OUT				4
18	PV_FTIME				4
19	FIELD_VAL	5		5	
20	UPDATE_EVT				
21	BLOCK_ALM				
22	ALARM_SUM	8		8	
23	ACK_OPTION				2
24	ALARM_HYS				4
25	HI_HI_PRI				1
26	HI_HI_LIM				4
27	HI-PRI				1
28	HI_LIM				4
29	LO_PRI				1
30	LO-LIM				4
31	LO_LO_PRI				1
32	LO_LO_LIM				4
33	HI_HI_ALM				
34	HI_ALM				
35	LO_ALM				
36	LO_LO_ALM				
	Totaux	31	26	31	46

Vues des paramètres du bloc d'entrée analogique

Erreurs de configuration du bloc

Erreur	Solution
Accept New Alarm Configuration (Acceptation de la nouvelle configuration d'alarme)	La nouvelle configuration d'alarme n'est pas acceptée au niveau de l'appareil. Sélectionnez une configuration d'alarme acceptée.
Accept New Excel Fault Parameters (Acceptation des nouveaux paramètres d'erreur Excel)	La nouvelle configuration d'erreur Excel n'est pas acceptée au niveau de l'appareil. Sélectionnez une configuration acceptée.
LinkConfiguration	Non applicable
SimulationActive	L'appareil est à l'état de simulation. Quittez la simulation en cours sur l'appareil.
DeviceFaultState	L'appareil est à l'état d'erreur. Reportez-vous au code d'erreur pour diagnostiquer l'erreur sur l'appareil.
Maint. Needed soon (Maintenance nécessaire prochainement)	L'appareil est à l'état d'avertissement. Reportez- vous au code d'avertissement pour diagnostiquer l'avertissement sur l'appareil.
Maint. Needed Now (Maintenance nécessaire immédiatement)	L'appareil est à l'état d'erreur. Reportez-vous au code d'erreur pour diagnostiquer l'erreur sur l'appareil.
Out Of Service (Hors service)	L'appareil est hors service. Contactez Honeywell Analytics ou forcez l'appareil en mode Auto.

Si l'émetteur XNX affiche le code d'erreur F130 (« Erreur de communication avec l'option »), cela signifie qu'il a détecté la carte du bus de terrain Foundation Fieldbus, mais ne parvient pas à communiquer avec elle. Vérifiez l'ensemble du câblage. Si le code d'erreur persiste, contactez le service après-vente de Honeywell Analytics pour de plus amples instructions.

Avertissement : si la tension chute en deçà de la plage de fonctionnement et que la communication est perdue, vérifiez la tension d'alimentation ou contactez l'assistance Honeywell Analytics.

Enregistrement de l'appareil par Fieldbus Foundation

FOUNDATIONTM **DEVICE REGISTRATION** Manufacturer: Honeywell Field Solutions XnX Universal Transmitter Model: Type: Gas Detector Device ITK Version: Device Test Campaign: 5.2.0 IT074400 Test Report: FF-527-(74400) Stack Test Campaign: Physical Layer Test Report: Physical Layer Profiles: CT0131FF PT-357 113, 123 Manufacturer ID: 0x48574C Device Type: Device Revision: 0x0009 0x01 Filename 0101.ffo 0101.sym CRC C6510BDA 6FDE0E9D ITK Version Device Description: 5.2.0 5.2.0 E5A7DFDE 5.2.0 **Capability File:** 010101.cff

Tested Features:

Resource Block Alarms and Events Function Block Linking Multi-bit Alert Reporting Trending Field Diagnostics Analog Input Function Block

18 January 2011

Registration Date

Richard J. Timoney President and CEO

Manuel technique du bus de terrain Foundation Fieldbus pour le XNX

Garantie

Déclaration de garantie

Tous les produits sont conçus et fabriqués par Honeywell Analytics, conformément aux normes techniques internationalement reconnues les plus récentes, dans le cadre d'un programme de contrôle de la qualité certifié ISO 9001.

L'émetteur universel XNX est garanti par Honeywell Analytics (ci-après désigné par « HA ») comme étant exempt de défauts de pièces et d'exécution dans des conditions d'utilisation et d'entretien normales pour les appareils suivants :

Appareil	Termes de la garantie
Émetteur universel XNX (exclut les consommables)	36 mois à compter de la date d'expédition à l'acheteur
Capteurs électrochimiques XNX (référence XNX-XS****)	12 mois à compter de la date de mise en service par un représentant agréé Honeywell Analytics
Détecteur polyvalent (MPD)	ou
	18 mois à compter de la date d'expédition par Honeywell Analytics
	la date la plus proche étant retenue

L'assistance sur le terrain ou dans les locaux du client n'est pas couverte par les présentes dispositions de garantie. Le temps passé et les frais de déplacement pour l'intervention sur site dans le cadre de la garantie seront facturés aux tarifs standard de HA. Contactez votre représentant HA pour de plus amples informations sur les contrats de maintenance.

Conditions de garantie

- La garantie limitée de HA concerne uniquement la vente de produits neufs à l'acheteur d'origine par HA ou par un distributeur, un revendeur ou un représentant agréé. La garantie ne couvre pas : les consommables, comme les piles sèches, les filtres et les fusibles, ou les pièces devant être remplacées dans le cadre de la maintenance de routine ; tout produit qui, de l'avis de HA, a fait l'objet d'une modification, de négligences ou d'une utilisation abusive, qui a été endommagé de façon accidentelle, qui a été détérioré par un empoisonnement grave du capteur ou par une utilisation, des conditions d'utilisation ou de manipulation anormales ; les défauts liés à une mauvaise installation, à une réparation par une personne non agréée ou à l'utilisation d'accessoires/de pièces non autorisés avec le produit.
- 2. Les réclamations relevant de la garantie de produit HA doivent être effectuées dans la période de garantie spécifiée et respecter le plus court délai possible après la découverte du problème. En cas de demande d'application de la garantie, il incombe à l'acheteur de demander à HA un numéro d'intervention et, si possible, de retourner le produit au centre de réparation ou au distributeur agréé HA en indiquant

clairement le numéro d'intervention et en joignant une description complète du problème.

- HA peut, à son entière discrétion, choisir d'envoyer des produits de remplacement à l'acheteur avant la réception des produits défectueux. L'acheteur accepte de renvoyer les produits défectueux dans un délai de 30 jours ou de payer pour les produits de remplacement.
- 4. L'achéteur est en charge des frais occasionnés pour le transport des produits entre son site et celui de HA. HA est en charge des frais occasionnés pour le transport des produits entre son site et celui de l'acheteur.
- 5. En cas d'installation fixe ou lorsqu'il est impossible de retourner le produit, l'acheteur doit soumettre une réclamation au service client de HA. Un technicien sera dépêché sur site, avec facturation à la journée. Lorsqu'une demande de garantie valable est identifiée, le produit défectueux est réparé ou remplacé gratuitement. L'application de la garantie est soumise au respect de toutes les conditions spécifiées dans la présente.
- 6. Si la demande d'application est acceptée par HA, ce dernier s'engage à réparer ou à remplacer gratuitement le produit défectueux et à renvoyer le produit réparé ou de remplacement à l'acheteur. En cas de rejet de la demande par HA, l'acheteur garde la possibilité de demander un retour du produit non modifié à ses frais, de payer aux tarifs en vigueur la réparation du produit ou un produit de remplacement adéquat, ou de laisser HA mettre l'unité au rebut. HA se réserve le droit de facturer toute intervention de l'un de ses techniciens selon les tarifs standard en vigueur à la date de réception de la demande de garantie.
- 7. La responsabilité de HA ne pourra en aucun cas être engagée pour un montant supérieur au prix initial du produit payé par l'acheteur.

Réclamations des consommateurs

Si vous avez acheté votre produit HA en tant que consommateur, les conditions de garantie susmentionnées n'affectent pas vos droits, conformément aux lois de protection des consommateurs en vigueur.

HA se réserve le droit de changer la présente politique à tout moment. Contactez HA pour obtenir les dernières dispositions relatives à cette garantie.

Index

A

Accès aux paramètres du bloc transducteur 28 accès distant 16 affichage de l'historique des événements 18 alarmes 18 Alarmes de processus 14 alarmes, simulation 19 alignement mécanique 20 alignement, mécanique 20 avertissements 10, 18

В

blindage, tresse d'acier 6 bloc de fonction 11 bloc de fonction (entrée analogique) 11 bloc d'entrée analogique 13, 14 bloc de ressource 11 Bloc de ressource 11, 12 bloc transducteur du capteur 11 Bloc transducteur du capteur 11, 12 bornier 6, 9 bus de terrain 6 bus de terrain Foundation Fieldbus 4

С

câblage 8 caractéristiques techniques 36 carte d'option 9 Cellule électrochimique 6 code d'erreur F130 36 Commandes spécifiques : bloc d'entrée analogique 13 Commandes spécifiques : bloc de ressource 12 Commandes spécifiques : bloc transducteur du capteur 12 commutateur de simulation 6.9 commutateur SIM 15 configuration 17 Configuration 10, 16 **Configuration et fonctionnement 8** contrôle de processus 4 contrôle distribué 4

contrôleur d'hôte 6, 16

D

date d'étalonnage 11 DD. *voir* descripteur d'appareil; *voir* descripteur d'appareil DD, voir « fichier descripteur d'appareil » 10 descripteur d'appareil 16 Description d'appareil 6 Description de l'appareil 10 description de blocs 10, 11 Description du produit 4 Données d'état 14 Données d'état : bloc d'entrée analogique 14

Ε

ECC. Voir cellule électrochimique écran de configuration 17 écran d'étalonnage 20 Emerson 475 16 enregistrement de l'appareil 38 entrée analogique 11 **EPKS.** Voir Experion Process Knowledge System erreurs 10, 18 erreurs de configuration des blocs 36 erreurs, simulation 19 étalonnage 20 étalonnage du point de consigne dynamique 6, 20 étalonnage du zéro 6, 20 événements informatifs 18 Experion 16 Experion Process Knowledge System 6

F

fabricant 11 FEATURES_SEL 12 Fichier descripteur d'appareil 10, 16 fonctionnement 16

Index (suite)

G

garantie 38 Garantie 39 glossaire 6

Η

historique des événements 18 Historique des événements 17

infrarouge 6 intensité du signal optique 20 interface utilisateur locale 16 IR. *Voir* infrarouge

J

joint torique 6

L

L_TYPE 13 L_TYPE = DIRECT 13

Μ

mA. Voir milliampère
menu de configuration 17
menu d'étalonnage 20
menu Test 19
milliampère 6
millivolt 6
mise en service 10
Mode de simulation 14, 15
Mode de simulation : bloc d'entrée analogique 14
mode manuel 14
mV. Voir millivolt

Ν

niveaux d'alarme 17 nom de l'appareil 11 numéro de série 11 opérations de bloc communes 11 Opérations de bloc communes 11 options de communication 4 OUT_SCALE 13

Ρ

paramètres du bloc analogique 35 paramètres du bloc d'entrée analogique 36 Paramètres du bloc de ressource 8, 21 paramètres du bloc transducteur 28 perle de ferrite 6 Perle de ferrite 5 POD. *Voir* Personality, Options, and Display présentation 4 Procédure d'étalonnage 21

R

rapports 12 réseau en « bus » de communication 4 resource block, specific commands 12

S

Searchline Excel 20 site Web de Fieldbus Foundation 8, 10, 11 Softwlock 6 SOFTWLOCK 12 sortie analogique, utilisation 19 sortie, analogique, utilisation 19 sortie, désactivation 19

Т

Test 18, 19 test fonctionnel 6 tests fonctionnels 20 type de capteur 11

Index (suite)

U

unités d'ingénierie, modification 12 unités, ingénierie 6

W

WRITE_ALM 12 WRITE_LOCK 12 WRITE_PRI 12

Х

XD_SCALE 13

Apprenez plus

www.honeywellanalytics.com

Contacter Honeywell Analytics:

Europe, Moyen-Orient, Afrique, L'Inde

Life Safety Distribution AG Weiherallee 11a CH-8610 Uster Switzerland Tel: +41 (0)44 943 4300 Fax: +41 (0)44 943 4398 L'Inde Tel: +91 124 4752700 gasdetection@honeywell.com

Amérique

Honeywell Analytics Inc. 405 Barclay Blvd. Lincolnshire, IL 60069 USA Tel: +1 847 955 8200 Toll free: +1 800 538 0363 Fax: +1 847 955 8210 detectgas@honeywell.com

Pacifique, Asie

Honeywell Analytics Asia Pacific #508, Kolon Science Valley (I) 187-10 Guro-Dong, Guro-Gu Seoul, 152-050 Korea Tel: +82 (0)2 6909 0300 Fax: +82 (0)2 2025 0329 analytics.ap@honeywell.com

Assistance Complémentaire

EMEAI: HAexpert@honeywell.com US: ha.us.service@honeywell.com

AP: ha.ap.service@honeywell.com

Remarque :

toutes les dispositions ont été prises pour garantir l'exactitude de cette publication. Cependant, nous déclinons toute responsabilité pour toute erreur ou omission. Les données et la législation sont susceptibles d'être modifiées. Nous vous invitons à vous procurer les réglementations, normes et directives les plus récemment publiées. Document non contractuel.

Rév 1.0 05/11 MAN0913_FR © 2011 Honeywell Analytics

www.honeywell.com